

Abstract

We apply independent component analysis as well as source imaging to surface electromyographic (EMG) data collected from a whole arm electrode array.

Three theoretical benefits over classical bipolar recordings:

- Source signals are separated to a greater degree
- \succ i.e. less cross-talk
- Signals are cleaner due to source separating effects of the spatial filter
- **No expert knowledge required for electrode** placement

These could potentially combine to increase recording quality for deep muscles especially without invasive needle electrodes.

I. Introduction

Electroencephalographic (EEG) research employs many sophisticated processing and analysis techniques such as:

- Independent component analysis (ICA)
- High-resolution source imaging
- **Connectivity analysis**

EEG source imaging also has the following benefits:

✤ Non-invasive

No expert knowledge for electrode placement

EMG research typically uses a small set of methods. Ordinarily, surface EMG recording uses a bipolar electrode pair placed above each muscle of interest, requiring domain knowledge for adequate placement. The resulting signal suffers, particularly when placement is suboptimal.

In an attempt to increase the quality of noninvasive, combined EEG/EMG analysis, we do the following:

- Collect EMG using a whole-arm electrode array
- Apply ICA decomposition
- ***** Localize independent component (IC) EMG sources to determine source origins

Pilot experiment

> Subject Task

- Center-out reaching task
- 2 locations, 8 directions per location (a)
- 1200 trials total
- \succ Data recording (b)
 - 512 Hz, Biosemi amplifier
 - 54 channel EMG (right arm)
 - 128 channel EEG (not shown here)
- 32 channel neck band (not shown here)
- \succ Anatomic imaging

Structural MRI of right arm

- Preprocessing
 - ➤ Bandpass filter 20 Hz to 58 Hz
- Common average reference
- Source Separation
- \succ Adaptive Mixture ICA (AMICA)
- Source Imaging
 - Hand segment MRI
 - Generate electrical forward model

Modeling Brain-Body Dynamics using EMG Source Imaging

Luca Pion-Tonachini¹²⁵, Zeynep Akalin-Acar²⁵, Samuel Ward³⁴, Ken Kreutz-Delgado¹, Scott Makeig²⁵

¹Department of Electrical Engineering, ²Swartz Center for Computational Neuroscience (SCCN), ³Department of Orthopaedic Surgery, ⁴Department of Radiology, ⁵Institute of Neural Computation (INC) of University of California, San Diego (UCSD)

II. Materials

III. Methods

■ Finite element method (FEM) model Four tissue types (skin, fat, muscle, bone) Estimate equivalent current dipole (ECD) locations in arm

2. Source Imaging

✤ Left: IC 22 Right: IC 26

The left three plots in each figure show the estimated ECD source position and moment for that IC overlaid on the appropriate MRI slices. The arm models to the right of MRI slices show the IC topography for comparison. These model dipoles are not incompatible with a model of net surface EMG signals as arising at the muscle termination into the tendon.

IC 22 Axial Sagittal Coronal 0-0

Possibly:

- ➢ Flexor carpi ulnaris
- > Palmaris longus

IC 26

Sagittal

Possibly:

- > Flexor carpi radialis
- Pronator radii teres